
HEP.TrkX

Scaling Deep Learning (on HPC)

Steve Farrell
NERSC, LBNL

(with material by Mustafa Mustafa)

Exa.TrX kickoff, 2019-06-04

Why do we need to scale deep learning applications?

2

● Rapid prototyping/model evaluation

● Problem scale

● Volume of scientific datasets can be
large

● Scientific datasets can be complex
(multivariate, high dimensional)

ML@NERSC User Survey 2018 ML@NERSC User Survey 2018

Why do we need to scale deep learning applications?

3

Models get bigger and more compute
intensive as they tackle more complex tasks

“... total amount of compute, in petaflop/s-days,
that was used to train selected results ... A
petaflop/s-day (pfs-day) = ... 1015 neural net
operations per second for one day, or a total of
about 1020 operations.” -- OpenAI Blog

blog.openai.com/ai-and-compute/

Parallelism strategies

4

Data Parallelism
Distribute input
samples.

Model Parallelism
Distribute network
structure (layers).

Layer Pipelining
Partition by layer.

Fig. credit: Ben-Nun and Hoefler arXiv:1802.09941

Data parallelism, synchronous Updates

5

Gradients are computed locally and summed
across nodes. Updates are propagated to all
nodes

● stable convergence

● scaling is not optimal because all nodes have

to wait for reduction to complete

● global (effective) batch size grows with

number of nodes
Synchronous SGD, decentralized

Data parallelism, asynchronous Updates

6

Gradients are sent to parameters server.
Parameters servers incorporates gradients
into model as they arrive and sends back
the updated model

● nodes don’t wait (perfect scaling)

● resilient

● stale gradients impact convergence

rate (depends on #workers)

● parameter server is a bottleneck
Asynchronous SGD, parameter-server

Large-Batch Training (LBT), synchronous weak scaling

7

Local batch-size = B

Global batch-size = N * B

B

B

B

.

.

.

P1

P2

PN

A
ll-

re
du

ce
Sy

nc
. S

te
p

● applies to SGD-type algorithms

○ data batch per node. Model updates are computed independently
○ updates are collectively summed and applied to the local model

Stochastic Gradient Descent (SGD)

8

N is total sample size

B is batch-size

η is learning rate

Δw is the parameter update in one gradient descent step

Linear learning-rate scaling

9

w0

w1

w2 w3

w1

Upper: 3 SGD steps w. learning-rate = η
Lower: 1 SGD step w. learning-rate = 3 * η

η → N * η

Sqrt learning-rate scaling

10

η → sqrt(N) * η

Motivated by the observation that the variance of the gradient scales with 1/batch-
size:

Learning-rate scaling
In practice, we see anywhere between sub-sqrt (e.g.You et al. arXiv:1708.03888) to
linear scaling (e.g. Goyal et al. arXiv:1706.02677)

Recent OpenAI (arXiv:1812.06162) study has illuminated the dependence of optimal
learning-rate on batchsize:

11Fig. McCandlish, Kaplan and Amodei arXiv:1812.06162

Challenges with Large Batch Training

12

● Training with large learning rates is not stable in the initial stages of the training

assumption breaks when parameters are changing rapidly

● A generalization gap appears: networks trained with small batches tend to
optimize and generalize better

AlexNet You et al. arXiv:1708.03888

You et al. arXiv:1708.03888

Explaining the generalization gap?

13

“... large-batch … converge to sharp minimizers of the training function … In
contrast, small-batch methods converge to flat minimizers” -- Keskar et al,
arXiv:1609.04836

Conceptual sketch of sharp and flat minimas of a loss function

Fig. credit: Keskar et al, arXiv:1609.04836

Explaining the generalization gap?

14

Loss at the end of training CIFAR-10 (axes are dominant eigenvectors of the Hessian)

B = 128 B = 256B = 64

B = 1024 B = 2048B = 512

Z. Yao et al. arXiv:1802.08241

FaceBook scaling result in 2017, batch-size=8k (using 256 GPUs):

● Linear learning-rate warm-up over 5 epochs to target rate
● Linear scaling of learning-rate (N * η) followed by original decay schedule
● The paper also clarifies subtleties and common pitfalls in distributed training

ResNet-50 ImageNet in 1 hour

15

No warm-up Gradual warm-up

Goyal et al. arXiv:1706.02677 Goyal et al. arXiv:1706.02677

This scheme breaks down
beyond batch-size = 8k for
ResNet on ImageNet

Z. Yao et al. arXiv:1810.01021 close the generalization gap for a wide range of
architectures on image classification tasks, using
● 2nd-order info. (~ loss surface curvature) to adaptively increase the batch-size
● adversarial training to regularize against “sharp-minima”

Adaptive batch-size scaling with 2nd-order information (ABSA)

16

ABS and ABSA with ResNet-18 on ImageNet dataset with up to 16k batch-size

Limits of batch-size scaling

17

McCandlish, Kaplan and Amodei arXiv:1812.06162
Recent empirical studies by OpenAI
(arXiv:1812.06162) and Google
Brain (arXiv:1811.03600) show that:

● A relationship between gradient
noise scale and “critical” batch-
size holds across many models,
algorithms and datasets

● ”gradient noise scale predicts
maximum useful batch-size”

● More complex datasets/tasks
have higher gradient noise, thus
can benefit from training with
larger batch-sizes

Scaling DL outlook

● Distributed training is imperative for larger and more complex models/datasets

● Data parallelism distributes more data among more workers

● Large batch training is unstable and may impact generalization error if hyper-

parameters are not “tuned” well

● Use learning-warm up and linear scaling to scale to modest scales < 10x. No

guarantees that it will work for all models

● Batch-size scaling seems to be more robust across many models

● A simple statistic, gradient noise scale, can predict maximum useful batch-size

18

Practical stuff
(systems, software, examples)

19

Software for Deep Learning
Several popular Deep Learning frameworks
• TensorFlow, Keras, PyTorch, …

Backed by hardware-optimized libraries
• MKL-DNN, cuDNN

Scalable distributed training libraries
• Horovod, Cray ML Plugin, Mesh-TensorFlow, MPI-Learn

Support for various kinds of hardware
• CPUs, GPUs, TPUs, FPGAs, other custom chips

Supercomputers

Big machines with diverse,
heterogeneous, high-
performance hardware
• Big FLOPS
• High-speed interconnects
• High-bandwidth file

systems

• Traditionally support large, parallel “simulation” applications
• Growing interest and support for data analytics and ML workloads

https://www.top500.org/

The Perlmutter supercomputer

● Next-gen NERSC system optimized for science
● First Cray Shasta system
● GPU-accelerated (4x NVIDIA) nodes and CPU-

only (AMD) nodes
● Cray Slingshot high performance network
● Single-tier All-Flash Lustre based file system

Delivered late 2020

https://www.nersc.gov/systems/perlmutter/

Distributed training tutorial
Latest code version:

https://github.com/sparticlesteve/sea19-dl-tutorial

Has basic CNN single-node example on CIFAR10 dataset

Uses ResNet on CIFAR10 to demonstrate distributed training

Uses Keras and Horovod for distributed training

● Easiest to use/teach

23

Horovod
Enables distributed synchronous
data-parallel training with minimal
changes to user code

Uses ring all-reduce and MPI to
collectively combine gradients
across workers

Such approaches shown to scale
better than parameter-server
approaches (e.g. distributed
TensorFlow with gRPC)

24

https://eng.uber.com/horovod/

Cray ML Plugin

25

Enables distributed synchronous
data-parallel training with minimal
changes to user code

Uses RDMA operations or
reductions

Might perform better than Horovod
on large networks and large scales

Includes some advanced features
for performance: gradient lag, hiding
communication NERSC CosmoFlow

Ingredients for multi-node training with Horovod
Initialize Horovod and MPI:

Wrap your optimizer in the Horovod distributed optimizer:

Construct the variables broadcast callback:

26

opt = keras.optimizers.SGD(lr=lr*hvd.size(), ...)

opt = hvd.DistributedOptimizer(opt)

hvd.init()

callbacks = [

hvd.callbacks.BroadcastGlobalVariablesCallback(0)
]

Linearly scaling the
learning rate

Train model as usual; it should now synchronize at every mini-batch step:

Launch your script with MPI

(we’ll use SLURM and srun instead of mpirun)

Ingredients for multi-node training

27

model.fit(..., callbacks=callbacks)

mpirun -n NUM_RANKS … python train.py …

Scaling results for ResNet CIFAR10

Training time goes down

Training loss and accuracy are still converging at similar rates

28

Training time Validation loss

Validation
accuracy

Science examples
(climate, cosmology)

29

Deep Learning for climate analytics

• Global warming increases rate of extreme weather phenomena
• We want to make quantifiable predictions about these effects
• Need to identify these phenomena in simulated climate data

– Heuristic labeling algorithms are imperfect
– Hand labeling is too tedious

Segmentation

Collaboration between NERSC, NVIDIA, UCB, OLCF
Pixel-level classification of extreme weather phenomena
• 3 classes: atmospheric river, tropical cyclone, background
• High class imbalance, mostly background
Labels acquired via heuristic algorithms

https://arxiv.org/abs/1810.01993

Segmentation

Architectures
• Modified Tiramisu and

DeepLabV3+
Software
• TensorFlow, Horovod
Customizations for scaling
• gradient lag, hybrid all-reduce,

hierarchical control plane

https://arxiv.org/abs/1810.01993

DeepLabv3+

Segmentation results

Best result for intersection-over-union (IoU) obtained: ~73%
Deep learning results are smoother than heuristic labels

https://arxiv.org/abs/1810.01993

Scaling performance

Excellent scaling on Summit

With DeepLabV3+ on all 27,369 GPUs:
• 999 PetaFlop/s (FP16) sustained
• 1.13 ExaFlop/s (FP16) peak

Shared the 2018 ACM
Gordon Bell Prize!

https://arxiv.org/abs/1810.01993

Deep Learning for cosmology

Cosmology seeks to answer
questions about
• The nature of dark matter
• The nature of dark energy
• The inflation of the early

universe

The answers are encoded in
the structure of the universe
• How can Deep Learning help?

CosmoFlow

● Collaboration between NERSC, Cray, Intel
● Predicting cosmological parameters from

3D voxels of Dark Matter simulations
● Uses TensorFlow and Cray PE ML Plugin

for scalable distributed training

Amrita Mathuriya, Deborah Bard, Peter Mendygral, Lawrence
Meadows, James Arnemann, Lei Shao, Siyu He, Tuomas Karna,
Daina Moise, Simon J. Pennycook, Kristyn Maschoff, Jason Sewall,
Nalini Kumar, Shirley Ho, Mike Ringenburg, Prabhat, Victor Lee

[arXiv:1808.04728]

CosmoFlow results

Successful prediction of 3 cosmological parameters
● Comparable to experimental uncertainties for 𝛺m

and 𝜎8, almost 5x better for Ns.
Scaled to 3.5PF on Cori with 8k KNL nodes
● Convergence issues at scale for further study

